首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   712篇
  免费   10篇
  国内免费   86篇
安全科学   43篇
废物处理   22篇
环保管理   156篇
综合类   270篇
基础理论   131篇
环境理论   1篇
污染及防治   118篇
评价与监测   32篇
社会与环境   35篇
  2023年   21篇
  2022年   19篇
  2021年   12篇
  2020年   14篇
  2019年   24篇
  2018年   14篇
  2017年   23篇
  2016年   37篇
  2015年   41篇
  2014年   39篇
  2013年   42篇
  2012年   25篇
  2011年   90篇
  2010年   39篇
  2009年   60篇
  2008年   66篇
  2007年   66篇
  2006年   22篇
  2005年   24篇
  2004年   16篇
  2003年   15篇
  2002年   13篇
  2001年   11篇
  2000年   9篇
  1999年   4篇
  1998年   15篇
  1997年   9篇
  1996年   8篇
  1995年   4篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1985年   3篇
  1984年   1篇
  1978年   2篇
  1969年   1篇
排序方式: 共有808条查询结果,搜索用时 546 毫秒
151.
To offset the carbon dioxide released by fossil fuels, a proposed sequestration strategy relies on burying garbage and waste in landfills. This paper roughly estimates the current annual world supply of carbonaceous waste to be 35.5 billion metric tons and to contain about 18 billion metric tons of carbon. If landfills received all of this waste, sequestration of more than 5.6 billion metric tons of carbon seems theoretically possible—an amount well in excess of the 3.3 billion metric tons which the atmosphere is currently gaining.  相似文献   
152.
A new approach for the estimation of trace metal emissions in Vilnius city was implemented, using vertical concentration profiles in the urban boundary layer and road tunnel measurement data. Heavy metal concentrations were examined in fine and coarse particle fractions using a virtual impactor (cut-off size diameter 2.5 μm). Negative vertical concentration gradients were obtained for all metals (Ba, Pb, V, Sb, Zn) and both fractions. It was estimated that the vertical concentration gradient was formed due to emissions from an area of about 12 km2. Road tunnel measurements indicated that trace metal concentrations on fine particles were lower than those on coarse particles, which suggested that re-emitted road dust was highly enriched in trace metal due to historic emissions within the tunnel. Emission rates of different pollutants in the road tunnel were calculated using pollutant concentration differences at the tunnel entrance and exit and traffic flow data. Heavy metal emission rates from the area of Vilnius city were estimated using the vertical gradient of heavy metal concentrations and the coefficient of turbulent mixing, as derived from meteorological measurement data. The emission values calculated by the two different methods coincided reasonably well, which indicated that the main source of airborne trace metals in Vilnius city is traffic. The potential of the vertical concentration gradient method for the direct estimation of urban heavy metal emissions was demonstrated.  相似文献   
153.
Carbon monoxide monitoring using continuous samplers is carried out in most major urban centres in the world and generally forms the basis for air quality assessments. Such assessments become less reliable as the proportion of data missing due to equipment failure and periods of calibration increases. This paper presents a semi-empirical model for the prediction of atmospheric carbon monoxide concentrations near roads for the purpose of interpolating missing data without the need for any traffic or emissions information. The model produces reliable predictions while remaining computationally simple by being site-specifically optimized. The model was developed for, and evaluated at, both a suburban site and an inner city site in Hamilton, New Zealand. Model performance statistics were found to be significantly better than other simple methods of interpolation with little additional computational complexity.  相似文献   
154.
• The synthesis and physicochemical properties of various CNMs are reviewed. • Sb removal using carbon-based nano-adsorbents and membranes are summarized. • Details on adsorption behavior and mechanisms of Sb uptake by CNMs are discussed. • Challenges and future prospects for rational design of advanced CNMs are provided. Recently, special attention has been deserved to environmental risks of antimony (Sb) element that is of highly physiologic toxicity to human. Conventional coagulation and ion exchange methods for Sb removal are faced with challenges of low efficiency, high cost and secondary pollution. Adsorption based on carbon nanomaterials (CNMs; e.g., carbon nanotubes, graphene, graphene oxide, reduced graphene oxide and their derivatives) may provide effective alternative because the CNMs have high surface area, rich surface chemistry and high stability. In particular, good conductivity makes it possible to create linkage between adsorption and electrochemistry, thereby the synergistic interaction will be expected for enhanced Sb removal. This review article summarizes the state of art on Sb removal using CNMs with the form of nano-adsorbents and/or filtration membranes. In details, procedures of synthesis and functionalization of different forms of CNMs were reviewed. Next, adsorption behavior and the underlying mechanisms toward Sb removal using various CNMs were presented as resulting from a retrospective analysis of literatures. Last, we prospect the needs for mass production and regeneration of CNMs adsorbents using more affordable precursors and objective assessment of environmental impacts in future studies.  相似文献   
155.
The cracking of styrene derivative polymers dissolved in decalin was conducted with metal-supported carbon catalysts under an inert gas atmosphere to recover monosubstituted styrene or monosubstituted ethylbenzene in higher yields than is obtained by pyrolysis, and to elucidate the detailed reaction mechanisms in the solvent. Poly-(4-methylstyrene), poly-(4-t-butylstyrene), poly-(α-methylstyrene), and polystyrene were used. In decalin without a catalyst, each polymer was decomposed into the monomer, dimer, and trimer derived from the corresponding polymer except for poly-(α-methylstyrene), which was decomposed into the monomer and styrene. By using metal-supported carbon, the olefinic compounds derived from the corresponding polymer were thoroughly hydrogenated to the saturated form in a nitrogen atmosphere by a hydrogen transfer reaction from decalin, which was simultaneously dehydrogenated to tetralin and naphthalene with the evolution of hydrogen gas. In comparison with metal species, Pd- and Ru-supported carbon catalysts maintained the hydrogenation activity for a longer time and with a lower evolution of hydrogen than Pt or Rh. The dehydrogenation of decalin was mainly observed not on the metal surfaces, but on the carbon surfaces over Pd-supported carbon. Stabilization of the monomers will be able to suppress the coking which occurs with repolymerization in long running process. Received: July 19, 2000 / Accepted: March 16, 2001  相似文献   
156.
PCDDs/DF and Co-PCB (dioxin) formations were studied with ash from a newly developed gasification and melting process for municipal solid waste. Ash samples were heated in a laboratory-scale fixed-bed reactor. Emphasis was placed on the effects of the type and composition of ash, temperatures, gas residence time, and gaseous organic precursors. Investigations using macroscopic and homologue distribution analyses led to the following conclusion. The ash from the gasification–melting process had the ability to generate dioxins in flue gas. A possible carbon source is unburned carbon in the ash samples, although this was very low (less than 0.01%). An experimental result that the level of dioxins generated from preheated fly ash obtained from a conventional incinerator was much lower than that from nonheated fly ash supported this conclusion. Dioxin concentrations obviously showed temperature dependence and peaked at 350°C. Dioxins formed in a gasification–melting process ash were readily desorbed from the surface, probably because of the low carbon content of the ash. There was no experimental evidence that gaseous organic precursors fed to the reactor generated dioxins. Therefore, an organic precursor was not essential for the formation of dioxins. A good linear relationship obtained between PCDDs/DFs and gas residence time also supported the assumption. Received: February 14, 2000 / Accepted: June 30, 2000  相似文献   
157.
A method to quantify the relative contributions of surface sources and photochemical production of atmospheric carbon monoxide has been implemented in a three-dimensional chemical-transport model. The impact of biogenic and anthropogenic hydrocarbons has been calculated. The oxidation of isoprene contributes to about 10% of the global tropospheric burden of carbon monoxide, with a maximum contribution over southern America and Africa. Oxidation of methane and terpenes contribute to 28 and 2%, respectively, of the tropospheric burden of CO. The oxidation of the other hydrocarbons, which include ethane, propane, ethylene, propylene and the surrogate hydrocarbon representing other hydrocarbons results in 12% of the CO tropospheric burden, among which 69% results from the oxidation of hydrocarbons of biologic origin. The overall global CO yield from the oxidation of isoprene is estimated to be 23% on a carbon basis. Comparisons between model results and the few available observations of isoprene, terpenes and their oxidation products show that there is no evidence that the current global isoprene emissions proposed in the IGAC/GEIA emissions data base are substantially overestimated, as suggested by previous studies.  相似文献   
158.
The method is used for calculating regional urban area dynamics and the resulting carbon emissions (from the land-conversion) for the period of 1980 till 2050 for the eight world regions. This approach is based on the fact that the spatial distribution of population density is close to the two-parametric Γ-distribution [Kendall, M.G., Stuart, A., 1958. The Advanced Theory of Statistics, vol. 1.2. Academic Press, New York; Vaughn, R., 1987. Urban Spatial Traffic Patterns, Pion, London]. The developed model provides us with the scenario of urbanisation, based on which the regional and world dynamics of carbon emissions and export from cities, and the annual total urban carbon balance are estimated. According to our estimations, world annual emissions of carbon as a result of urbanisation increase up to 1.25 GtC in 2005 and begin to decrease afterwards. If we compare the emission maximum with the annual emission caused by deforestation, 1.36 GtC per year, then we can say that the role of urbanised territories (UT) in the global carbon balance is of a comparable magnitude. Regarding the world annual export of carbon from UT, we observe its monotonous growth by three times, reaching 505 MtC. The latter, is comparable to the amount of carbon transported by rivers into the ocean (196–537 MtC). The current model shows that urbanisation is inhibited in the interval 2020–2030, and by 2050 the growth of urbanised areas would almost stop. Hence, the total balance, being almost constant until 2000, then starts to decrease at an almost constant rate. By the end of the XXI century, the total carbon balance will be equal to zero, with the exchange flows fully balanced, and may even be negative, with the system beginning to take up carbon from the atmosphere, i.e., becomes a “sink”. The regional dynamics is somewhat more complex, i.e., some regions, like China, Asia and Pacific are being active sources of Carbon through the studied period, while others are changing from source to sink or continue to be neutral in respect the GCC.  相似文献   
159.
We measured CO2 efflux from stems of seven subtropical tree species situated along an elevational gradient in the Luquillo Mountains, Puerto Rico and scaled these measurements up to the landscape level based on modeled and empirical relations. The most important determinants of ecosystem stem respiration were species composition and stem temperature. At a species scale, measured CO2 efflux per unit bole surface area at a given temperature was highest in the early successional species Cecropia schreberiana and lowest in species that inhabit high elevations such as Micropholis garciniifolia and Tabebuia rigida. Carbon dioxide efflux rates followed a diel pattern that lagged approximately 6 h behind changes in sapwood temperatures. At an ecosystem scale, our simulation model indicates a decreasing trend of stem respiration rates with increasing elevation due to shifts in species composition, lower temperatures and reductions in branch surface area. The highest estimated stem respiration rates were present in the lowland tabonuco forest type and the lowest rates were present in the elfin forest type (mean 7.4 and 2.1 Mg C ha−1 yr−1, respectively). There was slight temperature-induced seasonal variation in simulated stem respiration rates at low elevations, with a maximum difference of 19% between the months of February and July. Our results coincide well with those of Odum and Jordan [Odum, H.T., Jordan, C.F., 1970. Metabolism and evapotranspiration of the lower forest in a giant plastic cylinder. In: Odum, H.T., Pigeon, R.F. (Eds.), A Tropical Rain Forest: A Study of Irradiation and Ecology at El Verde, Puerto Rico. U.S. Atomic Energy Commission, Oak Ridge, TN, pp. I165–I189] for the tabonuco forest type and extend their work by presenting estimates and spatial patterns of woody tissue respiration for the entire mountain rather than for a single forested plot.  相似文献   
160.
Zero tillage is recognized as a potential measure to sequester carbon dioxide in soils and to reduce CO2 emissions from arable lands. An up-scaling approach of the output of the Environmental Policy Integrated Climate (EPIC) model with the information system SLISYS-BW has been used to estimate the CO2-mitigation potential in the state of Baden-Württemberg (SW-Germany). The state territory of 35,742 km2 is subdivided into eight agro-ecological zones (AEZ), which have been further subdivided into a total of 3976 spatial response units. Annual CO2-mitigation rates where estimated from the changes in soil organic carbon content comparing 30 years simulations under conventional and zero tillage. Special attention was given to the influence of tillage practices on the losses of organic carbon through soil erosion, and consequently on the calculation of CO2-mitigation rates. Under conventional tillage, mean carbon losses through erosion in the AEZ were estimated to be up to 0.45 Mg C ha−1 a−1. The apparent CO2-mitigation rate for the conversion from conventional to zero tillage ranges from 0.08 to 1.82 Mg C ha−1 a−1 in the eight AEZ, if the carbon losses through soil erosion are included in the calculations. However, the higher carbon losses under conventional tillage compared to zero tillage are composed of both, losses through enhanced CO2 emissions, and losses through intensified soil erosion. The adjusted net CO2-mitigation rates of zero tillage, subtracting the reduced carbon losses through soil erosion, are between 0.07 and 1.27 Mg C ha−1 a−1 and the estimated net mitigation rate for the entire state amounts to 285 Gg C a−1. This equals to 1045 Gg CO2-equivalents per year with the cropping patterns in the reference year 2000. The results call attention to the necessity to revise those estimation methods for CO2-mitigation which are exclusively or predominantly based on the measurements of differential changes in total soil organic carbon without taking into account the tillage effects on carbon losses through soil erosion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号